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METALLURGICAL THERMODYNAMICS II

Partial Properties of Solutions



A total property of a system consisting of multiple substances is represented as

If the system consists of a liquid mixture comprised of molecules of the same size 

and equal forces between, like a solid mixture, the total property is the same:

Ideal solution is such a liquid behaving like a solid mixture

In other words, the components of the ideal solution avoid intimate mixing

In contrast, real solutions consist of interacting chemical species and their total 

system property is apportioned or shared by individual components as their 

partial properties

𝑛𝑀 = 𝑛𝑖𝑀𝑖

𝑛𝑀 = 𝑛𝑖𝑀𝑖

𝑛𝑀 = 𝑛𝑖𝑀𝑖



Apportioning of system properties as a puzzle analogy

Consider the surface area of puzzle pieces and relate them to the volume of 

individual components in solutions. The partial molar volume assigned to each 

component in a real solution is more or less than their volumes at pure state 

depending on their interactions

Ideal solution Real solution

𝑛𝑉 = 𝑛𝑖𝑉𝑖𝑛𝑀 = 𝑛𝑖𝑉𝑖 𝑉𝑖 > 𝑉𝑖



Although partial properties are shared system properties, in other words they are 

obtained from the system property, they may be needed in calculation of the total 

property of another system they become a part of

Partial property of each species in the solution is required in order to obtain the 

total property of the solution

Partial molar volume 𝑉𝑖 of a species is a function of its molar ratio 𝑥𝑖

So both total solution property and individual partial property approach the pure 

species property as a solution becomes pure in species i:

𝑥𝑖 =  
𝑛𝑖
 𝑛𝑖

lim
𝑥𝑖→1

𝑀 = lim
𝑥𝑖→1
𝑀𝑖 = 𝑀𝑖



Consider adding a drop of water to a beaker containing an equimolar mixture of 

alcohol and water at room temperature T and atmospheric pressure P

The drop that is also at T and P, contains Δnw moles

Allowing enough time for thermal equilibrium,

you measure the volume change and see that

where Vw is the molar volume of pure water

and  𝑉𝑤represents the effective molar volume

of water in the solution

The effective molar volume of water is considered

a property of the original equimolar solution

when the process is taken to the limit of an infinitesimal drop

or 𝑉𝑤 = lim
∆𝑛𝑤→0

∆(𝑛𝑉)

∆𝑛𝑤
=
𝑑(𝑛𝑉)

𝑑𝑛𝑤

∆ 𝑛𝑉 =  𝑉𝑤∆𝑛𝑤 < 𝑉𝑤∆𝑛𝑤

 𝑉𝑤 =
∆(𝑛𝑉)

∆𝑛𝑤

𝑉𝑤 =
𝜕𝑛𝑉

𝜕𝑛𝑤 𝑇,𝑃,𝑛
𝑎



Hence 

Total molar volume of a solution is equal to the sum of the product of the partial 

molar volume of each species and its mole number

Total differential equation of solution volume:

At constant temperature and pressure

since 𝑛𝑖 = 𝑥𝑖𝑛,

𝑛𝑉 = 𝑛1𝑉1 + 𝑛2𝑉2 + 𝑛3𝑉3 +⋯+𝑛𝑚 𝑉𝑚

𝑑 𝑛𝑉 =
𝜕 𝑛𝑉

𝜕𝑃
𝑇,𝑛

𝑑𝑃 +
𝜕 𝑛𝑉

𝜕𝑇
𝑃,𝑛

𝑑𝑇 + 

𝑖

𝜕 𝑛𝑉

𝜕𝑛𝑖 𝑃,𝑇,𝑛𝑗

𝑑𝑛𝑖

𝑑 𝑛𝑉 = 

𝑖

𝑉𝑖𝑑𝑛𝑖

𝑑𝑛𝑖 = 𝑥𝑖𝑑𝑛 + 𝑛𝑑𝑥𝑖

𝑉𝑖 =
𝜕𝑛𝑉

𝜕𝑛𝑖 𝑇,𝑃,𝑛𝑗



And since the complete differential of total volume 𝑑(𝑛𝑉) = 𝑛𝑑𝑉 + 𝑉𝑑𝑛,

Seperating the terms n and dn,

The solution may contain any moles n, and its size dn may vary by any value

Thus

or

𝑛𝑑𝑉 + 𝑉𝑑𝑛 = 

𝑖

𝑉𝑖(𝑥𝑖𝑑𝑛 + 𝑛𝑑𝑥𝑖)

𝑑𝑉 − 

𝑖

𝑉𝑖𝑑𝑥𝑖 𝑛 + 𝑉 − 

𝑖

𝑉𝑖𝑥𝑖 𝑑𝑛 = 0

𝑉 = 

𝑖

𝑥𝑖𝑉𝑖

𝑛𝑉 = 

𝑖

𝑛𝑖𝑉𝑖



Example – How much water must be added to 1000 ml of NiSO4-water solution 

containing 96% NiSO4.6H2O by volume in order to make a plating solution 

containing 64% NiSO4.6H2O by volume?

Partial molar volume of NiSO4.6H2O = 98.1 ml for 96% solution, 96.6 ml for 64% 

solution

Partial molar volume of H2O = 14.5 ml for 96% solution, 17.1 ml for 64% solution



For a system of constant total composition of n=1, total differential of volume is 

represented as

Comparing with the general expression for 𝑑𝑉 =  𝑖 𝑥𝑖𝑑𝑉𝑖 + 𝑖 𝑉𝑖𝑑𝑥𝑖 and 

substitution yields:

The equation must hold for all changes in P, T, and 𝑉𝑖 caused by changes of state 

in a homogeneous phase. For constant T and P,

Partial properties of species making up a solution are dependent on each other

𝑑𝑉 =
𝜕𝑉

𝜕𝑃
𝑇,𝑛

𝑑𝑃 +
𝜕𝑉

𝜕𝑇
𝑃,𝑛

𝑑𝑇 + 

𝑖

𝑉𝑖𝑑𝑥𝑖

𝜕𝑉

𝜕𝑃
𝑇,𝑛

𝑑𝑃 +
𝜕𝑉

𝜕𝑇
𝑃,𝑛

𝑑𝑇 − 

𝑖

𝑥𝑖𝑑𝑉𝑖 = 0

 

𝑖

𝑥𝑖𝑑𝑉𝑖 = 0



So far relationships between total and partial volume of solutions have been 

discussed

The same relationships hold for other extensive properties including enthalpy, 

entropy, internal energy and Gibbs free energy

𝑉 = 𝑥1𝑉1 + 𝑥2𝑉2 +⋯+𝑥𝑚 𝑉𝑚

𝑑𝑉 = 𝑑𝑥1𝑉1 + 𝑑𝑥2𝑉2 +⋯+𝑑𝑥𝑚 𝑉𝑚

𝑥1𝑑𝑉1 + 𝑥2𝑑𝑉2 +⋯+𝑥𝑚 𝑑𝑉𝑚 = 0

𝐻 = 𝑥1𝐻1 + 𝑥2𝐻2 +⋯+𝑥𝑚 𝐻𝑚

𝑑𝐻 = 𝑑𝑥1𝐻1 + 𝑑𝑥2𝐻2 +⋯+𝑑𝑥𝑚 𝐻𝑚

𝑥1𝑑𝐻1 + 𝑥2𝑑𝐻2 +⋯+𝑥𝑚 𝑑𝐻𝑚 = 0

𝑆 = 𝑥1𝑆1 + 𝑥2𝑆2 +⋯+𝑥𝑚 𝑆𝑚

𝑑𝑆 = 𝑑𝑥1𝑆1 + 𝑑𝑥2𝑆2 +⋯+𝑑𝑥𝑚 𝑆𝑚

𝑥1𝑑𝑆1 + 𝑥2𝑑𝑆2 +⋯+𝑥𝑚 𝑑𝑆𝑚 = 0

𝐺 = 𝑥1𝐺1 + 𝑥2𝐺2 +⋯+𝑥𝑚 𝐺𝑚

𝑑𝐺 = 𝑑𝑥1𝐺1 + 𝑑𝑥2𝐺2 +⋯+𝑑𝑥𝑚 𝐺𝑚

𝑥1𝑑𝐺1 + 𝑥2𝑑𝐺2 +⋯+𝑥𝑚 𝑑𝐺𝑚 = 0

𝑈 = 𝑥1𝑈1 + 𝑥2𝑈2 +⋯+𝑥𝑚 𝑈𝑚

𝑑𝑈 = 𝑑𝑥1𝑈1 + 𝑑𝑥2𝑈2 +⋯+𝑑𝑥𝑚 𝑈𝑚

𝑥1𝑑𝑈1 + 𝑥2𝑑𝑈2 +⋯+𝑥𝑚 𝑑𝑈𝑚 = 0



Partial properties in binary solutions

Equations covered so far enable the calculation of a partial property as a function 

of composition. An alternative graphical way is more convenient for binary 

solutions

Since 𝑥𝐴 + 𝑥𝐵 = 1, 𝑑𝑥𝐴 = −𝑑𝑥𝐵

Partial property changes total to 0 

𝑀 = 𝑥𝐴𝑀𝐴 + 𝑥𝐵𝑀𝐵

𝑑𝑀 = 𝑥𝐴𝑑𝑀𝐴 + 𝑥𝐵𝑑𝑀𝐵 +𝑀𝐴𝑑𝑥𝐴 +𝑀𝐵𝑑𝑥𝐵

𝑑𝑀 = 𝑥𝐴𝑑𝑀𝐴 + 𝑥𝐵𝑑𝑀𝐵 + (𝑀𝐴 −𝑀𝐵)𝑑𝑥𝐴

𝑑𝑀

𝑑𝑥𝐴
= (𝑀𝐴 −𝑀𝐵)

𝑀 = 𝑀𝐴 + 𝑥𝐵(𝑀𝐵 −𝑀𝐴) 𝑀 = 𝑥𝐴 𝑀𝐴 −𝑀𝐵 +𝑀𝐵

𝑀𝐴 = 𝑀 − 𝑥𝐵
𝑑𝑀

𝑑𝑥𝐵
𝑀𝐵 = 𝑀 − 𝑥𝐴

𝑑𝑀

𝑑𝑥𝐴



The relationships just derived enable determination of partial molar properties of 

components when the total solution property and its variation with concentration 

is known

𝑉𝐴 = 𝑉 − 𝑥𝐵
𝑑𝑉

𝑑𝑥𝐵

𝑉𝐵 = 𝑉 − 𝑥𝐴
𝑑𝑉

𝑑𝑥𝐴



Example – Derive expressions for the partial molar volumes of the components of 

a binary solution as a function of composition. The total volume change of mixing 

is

∆𝑉𝐴 = ∆𝑉𝑀 − 𝑥𝐵
𝑑∆𝑉𝑀
𝑑𝑥𝐵

∆𝑉𝐵 = ∆𝑉𝑀 − 𝑥𝐴
𝑑∆𝑉𝑀
𝑑𝑥𝐴

∆𝑉𝑀 = 2.7𝑥𝐴𝑥𝐵cm3/mol



The relationships just derived enable determination of partial molar properties of 

components when the total solution property and its variation with concentration 

is known

𝐺𝐴 = 𝜇𝐴 = 𝐺𝑥𝐵 −
𝑑𝐺

𝑑𝑥𝐵

Recall that 𝜇𝐴
𝑖𝑑 = 𝐺𝐴

𝑜 + 𝑅𝑇 ln 𝑥𝐴



Example – Variation of total molar properties of the Cd-Sn alloy system with 

composition at 773 K are given in table form. Obtain the partial molar properties 

of the components graphically for 45% Sn and calculate the activities of the 

components at 773 K

𝐺𝑆𝑛 = 𝐺𝑆𝑛
𝑜 + 𝑅𝑇 ln 𝑎𝑆𝑛

X Sn dG, cal dH, cal TdS, cal

0 -100 0 100

0.1 -410 195 603

0.2 -620 325 943

0.3 -750 400 1152

0.4 -820 435 1252

0.5 -845 435 1283

0.6 -825 405 1229

0.7 -760 350 1105

0.8 -635 260 897

0.9 -425 140 564

1 -120 0 120

-1000

-500
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500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dG, cal dH, cal TdS, cal



Relationships between partial molar properties

The sound basis of thermodynamic relationships among pure substances with 

constant composition allows us to make use of all of them for analysis of 

solutions with variable composition by substituting molar properties of pure 

substances with the partial molar properties 

𝜕𝐺𝑖
𝜕𝑇 𝑃,𝑛𝑗

= −𝑆𝑖

∆𝐺𝑖 = ∆𝐻𝑖 − 𝑇∆𝑆𝑖

 𝜕(𝐺𝑖 𝑇)

𝜕(  1 𝑇)
𝑃,𝑛𝑗

= 𝐻𝑖

𝜕𝐺𝑖
𝜕𝑃 𝑇,𝑛𝑗

= 𝑉𝑖

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 𝑑𝐴 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇



Example – Determine expressions for partial molar enthalpies and the pure 

species enthalpies for an arbitrary binary solution system of A and B. The total 

molar enthalpy variation by concentration is given as:

𝐻 = 400𝑥𝐴 + 600𝑥𝐵 + 𝑥𝐴𝑥𝐵(40𝑥𝐴 + 20𝑥𝐵) J/mol
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𝑀𝐴 = 𝑀 − 𝑥𝐵
𝑑𝑀

𝑑𝑥𝐵



Example – The free energy of a binary ideal solution of species 1 and 2 at 

ambient T and P is represented by the equation

Determine expressions for 𝐺1 and 𝐺2 at equimolar concentration

𝐺1 = 𝐺 − 𝑥2
𝑑𝐺

𝑑𝑥2

𝐺2 = 𝐺 − 𝑥1
𝑑𝐺

𝑑𝑥1

𝐺𝑖𝑑 = 𝑥1𝐺1 + 𝑥2𝐺2 + 𝑅𝑇(𝑥1ln 𝑥1 + 𝑥2ln 𝑥2) J/mole



Obtaining total solution property from one of the components’

Total solution property in terms of partial properties is simplified by virtue of the 

equation  𝑋𝐴 + 𝑋𝐵 = 1

Multiplying both sides by 𝑑𝑋𝐴 and dividing by 𝑋𝐵
2

Replacing (1-XA)=XB and dXA=-dXB

𝑀 = 𝑥𝐴𝑀𝐴 + 𝑥𝐵𝑀𝐵

𝑀𝐴 = 𝑀 + (1 − 𝑋𝐴)(
𝑑𝑀

𝑑𝑋𝐴
)

𝑀𝐴𝑑𝑋𝐴

𝑋𝐵
2 =

𝑀𝑑𝑋𝐴 + 1 − 𝑋𝐴 𝑑𝑀

𝑋𝐵
2

𝑀𝐴𝑑𝑋𝐴

𝑋𝐵
2 =

−𝑀𝑑𝑋𝐵 + 𝑋𝐵𝑑𝑀

𝑋𝐵
2 = 𝑑

𝑀

𝑋𝐵



Integrating both sides gives

Setting partial mixing or excess properties ΔMM and ME equal to zero at XB=1

 
𝑀
𝑋𝐵
(𝑎𝑡𝑋𝐵=1)

𝑀
𝑋𝐵

𝑑
𝑀

𝑋𝐵
=  

𝑋𝐴=0

𝑋𝐴 𝑀𝐴𝑑𝑋𝐴

𝑋𝐵
2

𝑀

𝑋𝐵
−𝑀𝐵

𝑜 =  
𝑋𝐴=0

𝑋𝐴 𝑀𝐴𝑑𝑋𝐴

𝑋𝐵
2

Δ𝑀𝑀

𝑋𝐵
=  

𝑋𝐴=0

𝑋𝐴 ∆𝑀
𝐴

𝐴𝑑𝑋𝐴

𝑋𝐵
2

constant

𝑀𝐸

𝑋𝐵
=  

𝑋𝐴=0

𝑋𝐴 𝑀
𝐸

𝐴𝑑𝑋𝐴

𝑋𝐵
2

constant



Values of integrals can be obtained either analytically or graphically

The following steps are involved in analytical integration:

• Replacement of the property 𝑀𝐴, ∆𝑀
𝑀

𝐴 or ∆𝑀
𝐸

𝐴 into the integral

• Organization of the function inside the integral in such a way to leave only one 

variable

• Integration and replacement of the limits

Graphical integration involves determination of the area under the curve 𝑀𝐴/XB
2, 

∆𝑀
𝑀

𝐴/XBB
2 or ∆𝑀

𝐸

𝐴/XB
2 vs. XA between the limits

𝑀

𝑋𝐵
−𝑀𝐵

𝑜 =  
𝑋𝐴=0

𝑋𝐴 𝑀𝐴𝑑𝑋𝐴

𝑋𝐵
2



Example –Partial volume of mixing of A is given as ∆𝑉 𝐴 = 10𝑥𝐵
2 + 40𝑥𝐵

3

Find the total volume of the solution at xA = 0.669

To check the solution, ∆𝑉 = 𝑥𝐴𝑥𝐵 30𝑥𝐴 + 50𝑥𝐵

∆𝑉 = 0.669 0.331 30(0.669 + 50(0.331) = 8.11 cm3

∆𝑉

𝑋𝐵
=  

𝑋𝐴=0

𝑋𝐴=0.669∆𝑉 𝐴𝑑𝑋𝐴

𝑋𝐵
2 =  

𝑋𝐴=0

𝑋𝐴=0.669 10𝑥𝐵
2 + 40𝑥𝐵

3 𝑑𝑋𝐴

𝑋𝐵
2

∆𝑉

0.331
=  

𝑋𝐴=0

𝑋𝐴=0.669

10 + 40𝑥𝐵 𝑑𝑋𝐴 =  
𝑋𝐴=0

𝑋𝐴=0.669

(50 − 40𝑋𝐴)𝑑𝑋𝐴

∆𝑉

0.331
= 50 0.669 − 20 0.669 0.669 = 24.5

∆𝑉 = 8.11cm3



Homework question – The activity of a component for binary systems comprised 

of species that are chemically similar is represented as lnα1 = 1.7613(1-2x1)

Obtain G/RT value for x1= 0.398

𝐺

𝑅𝑇(𝑋2)
=  

𝑋1=0

𝑋1=0.398𝐺 1𝑑𝑋1

𝑅𝑇𝑋2
2



Further derivation of the fundamental partial property equations enable 

determination of the partial property of one component, 𝑀𝐴 if the variation of the 

other’s,𝑀𝐵 as a function of composition is known

substituting by 𝑥𝐴 = 1 − 𝑥𝐵 yields

Equation can be integrated between limits 𝑀𝐵 and 𝑀𝐵
𝑜

Because 𝑀𝐵 is constant at 𝑥𝐵 = 1 and equals 𝑀𝐵
𝑜 as

1−𝑥𝐵

𝑥𝐵
equals 0

𝑥𝐴𝑑𝑀𝐴 + 𝑥𝐵𝑑𝑀𝐵 = 0

𝑑𝑀𝐵 = −
1 − 𝑥𝐵
𝑥𝐵

𝑑𝑀𝐴

 
𝑀𝐵
𝑜

𝑀𝐵

𝑑𝑀𝐵 = 𝑀𝐵 −𝑀𝐵
𝑜 =  

(𝑀𝐴)𝑋𝐵=1

(𝑀𝐴)𝑋𝐵=𝑥 1 − 𝑥𝐵
𝑥𝐵

𝑑𝑀𝐴



𝑀𝐵 is obtained from the integration by adding 𝑀𝐵
𝑜 directly if 𝑀𝐴 = 𝑓 𝑥𝐵 is 

known

Analytical determination involves the following steps:

• Organize 𝑀𝐴 as a function of only one composition variable

• Take the derivative of 𝑀𝐴 and replace it into the integral

• Organize the function inside the integral in such a way to leave only one 

variable and change the limits of the integral if necessary, to make it in accord 

with the derivative of the integral. Make use of the relationship dXA=-dXB

• Integrate the function, replace the limits to determine the value of the integral

𝑀𝐵 −𝑀𝐵
𝑜 = − 

(𝑀𝐴)𝑋𝐵=1

(𝑀𝐴)𝑋𝐵=𝑥 1 − 𝑥𝐵
𝑥𝐵

𝑑𝑀𝐴



Graphical determination of 𝑀𝐵 −𝑀𝐵
𝑜 is possible by plotting a 

𝑥𝐴

𝑥𝐵
-𝑀𝐴 graph

The area under the curve between the limits (𝑉
𝐴
)𝑋𝐵=1 and (𝑉

𝐴
)𝑋𝐵=𝑎 gives 𝑉𝐵 −

𝑉𝐵
𝑜

𝑉𝐵 − 𝑉𝐵
𝑜 =  

(𝑉𝐴)𝑋𝐵=1

(𝑉𝐴)𝑋𝐵=𝑎 𝑥𝐴
𝑥𝐵
𝑑𝑉𝐴

𝑉𝐵 − 𝑉𝐵
𝑜 =  

𝑈1

𝑈2

𝑦𝑑𝑈



However there are some limitations with graphical determination:

• The value of 𝑀𝐴 becomes -∞ if 𝑀𝐴 has logarithmic composition terms

• XA/XB becomes ∞ when XB becomes zero

These problems may be resolved for excess properties and properties of mixing 

using the α-function:

For any component i, αi is defined as

𝛼𝑖 =
𝑀
𝐸

𝑖

(1 − 𝑋𝑖)
2

α-function = 0/0 when Xi becomes 1 so that its integral gives a finite value



Derivation of the α-function

Let 𝑀
𝐸

𝐴 = 𝛼𝐴𝑋𝐵
2,

Then 𝑑𝑀
𝐸

𝐴 = 𝑑𝛼𝐴𝑋𝐵
2 + 2𝛼𝐴𝑋𝐵𝑑𝑋𝐵

Replacing into integral yields

The first integral is expanded by virtue of the identity  𝑑(𝑥𝑦) =  𝑦𝑑𝑥 +  𝑥𝑑𝑦

𝑀
𝐸

𝐵 at 𝑋𝐵 = − 
(𝑀
𝐸
𝐴)𝑋𝐵=1

(𝑀
𝐸

𝐴)𝑋𝐵=𝑎 𝑋𝐴
𝑋𝐵

𝑑𝑀
𝐸

𝐴

𝑀
𝐸

𝐵 at 𝑋𝐵 = − 
(𝛼𝐴)𝑋𝐵=1

(𝛼𝐴)𝑋𝐵=𝑎 𝑋𝐴
𝑋𝐵

𝑋𝐵
2𝑑𝛼𝐴 − 

𝑋𝐵=1

𝑋𝐵=𝑎 𝑋𝐴
𝑋𝐵

2𝛼𝐴𝑋𝐵𝑑𝑋𝐵

𝑀
𝐸

𝐵 at 𝑋𝐵 = − 
(𝛼𝐴)𝑋𝐵=1

(𝛼𝐴)𝑋𝐵=𝑎

𝑋𝐴𝑋𝐵𝑑𝛼𝐴 − 
𝑋𝐵=1

𝑋𝐵=𝑎

2𝛼𝐴𝑋𝐴𝑑𝑋𝐵

 
(𝛼𝐴)𝑋𝐵=1

(𝛼𝐴)𝑋𝐵=𝑎

𝑋𝐴𝑋𝐵𝑑𝛼𝐴 =  𝑑(𝑋𝐴𝑋𝐵𝛼𝐴) −  𝛼𝐴𝑑(𝑋𝐴𝑋𝐵)



Grouping the last terms,

Numerical value for −𝑋𝐴𝑋𝐵𝛼𝐴 is readily calculated, the value of the integral can 

be determined graphically or analytically

Analytical integration with α-function is done by replacing 𝛼𝐴 into the equation 

and integrating between the limits

Graphical determination is done by obtaining the area under XB vs. 𝛼𝐴 graph 

𝑀
𝐸

𝐵 at 𝑋𝐵 = − 𝑑 𝑋𝐴𝑋𝐵𝛼𝐴 + 𝛼𝐴𝑑(𝑋𝐴𝑋𝐵) −  2𝛼𝐴𝑋𝐴𝑑𝑋𝐵

𝑀
𝐸

𝐵 at 𝑋𝐵 = −𝑋𝐴𝑋𝐵𝛼𝐴 + 𝛼𝐴𝑋𝐴𝑑𝑋𝐵 + 𝛼𝐴𝑋𝐵𝑑𝑋𝐴 − 2𝛼𝐴𝑋𝐴𝑑𝑋𝐵

𝑀
𝐸

𝐵 at 𝑋𝐵 = −𝑋𝐴𝑋𝐵𝛼𝐴 − 𝛼𝐴 2𝑋𝐴 − 𝑋𝐴 + 𝑋𝐵 𝑑𝑋𝐵

𝑀
𝐸

𝐵 at 𝑋𝐵 = −𝑋𝐴𝑋𝐵𝛼𝐴 − 𝛼𝐴𝑑𝑋𝐵 𝛼𝐴 =
𝑀
𝐸

𝐴

𝑋𝐵
2



Example – Consider the binary system Fe-Ni at 1600 °C

The value of partial Gibbs energy of mixing

goes to infinity at the lower limit and results in an unbounded area

This problem is overcome by using 

partial excess Gibbs energy which reaches 

a finite value of RT lnγo
Ni at XNi =0

Using partial excess values provides good

results as long as XFe>0 since XNi/XFe =∞

at XFe=0

α-function enables obtaining finite integral over all X values

X Ni 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

a Ni 1.00 0.89 0.77 0.62 0.49 0.37 0.28 0.21 0.14 0.07 0.00

ΔGm Ni 0.00 -432.00 -989.00 -1773.00 -2684.00 -3647.00 -4681.00 -5841.00 -7399.00 -10024.00 -∞

X Ni/X Fe ∞ 9.00 4.00 2.33 1.50 1.00 0.67 0.43 0.25 0.11 0.00
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∆𝑀𝐹𝑒 = − 
(∆𝑀𝑁𝑖)𝑋𝐹𝑒=1

(∆𝑀𝑁𝑖)𝑋𝐹𝑒=𝑎 1 − 𝑥𝐹𝑒
𝑥𝐹𝑒

𝑑∆𝑀𝑁𝑖
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